

Background Correction

Non specific absorption caused by:

- Molecular absorption in the Gas Phase
- Light scattering by particles in the Light Path

Excellence Inspiring

Molecular Absorption in the UV Region

From data supplied by Dr. John Willis

Radiation from hollow cathode lamp is attenuated by NON-ATOMIC source

- Molecular species
- Solid particles
- Absorption
- Scatter

Signal is added to atomic signal

Results in FALSELY HIGH SIGNAL

Most severe in graphite furnace

• Can exceed 2.0 abs

Background / non-specific absorption is normally very small in flame AA

- Chemically rich flame environment dissociates salt particles and molecules very efficiently

What conditions can lead to background absorption in flame AA?

- Analytical wavelengths less than 250 nm
- Low analyte concentrations
- High dissolved solids (salt) solutions
- Fuel rich (cooler) Air/Acetylene flames

General Background Correction

Total absorbance measured

• Atomic + non-specific

Background measured

Non-specific only

Measurements are time separated

• A few milliseconds

Atomic absorption calculated

 Total absorbance - background absorbance = atomic absorbance

Typical Signals Measured

Graphite furnace signals have rapid rise and rapid decay times

• Up to 20 absorbance units/second

Time separated total and background absorbances need to be rapidly made

- Ideally simultaneously
- 2 10 ms intervals in commercial instruments
- Larger time difference greater error
 - Exception is flame AA where we work with a steady state absorption signal

Background Correction Techniques

Deuterium Zeeman Smith-Hieftje

Most common

Continuum source to measure background

Deuterium lamp

Operating range from 180 to ~ 425 nm

Background is most significant at shorter wavelength

• Deuterium works well MOST of the time

Deuterium Background Correction

Inspiring

Deuterium Background Correction

Radiation from **BOTH** hollow cathode lamp and deuterium lamp are coincident

- If NOT measurements made on different atom population
 - Significant error

Hollow cathode lamp energy attenuated by **BOTH** atomic and background species

Total absorption

Deuterium energy attenuated by background species

- Background only
- Atomic component too small to detect

Hollow cathode lamp signal Deuterium lamp signal Electronically processed signal

- = AA + BGD
- = BGD only
- = AA only

D₂ Lamp

Inspiring Excellence

Double Beam Schematic – D₂

Inspiring

VARIAN

Limitations of deuterium background correction

- Intensity of continuum inadequate at high wavelength
- Cannot accurately correct for structured background
- Spectral interferences can occur

– Rare

Zeeman background correction overcomes these limitations

Atomic spectral lines are split in the presence of a magnetic field

- In "simple" or "normal" zeeman effect
 - One pi (π) component
 - At original wavelength
 - Polarized parallel to magnetic field
 - Two sigma (σ) components
 - Symmetrically displaced around original wavelength
 - Polarized perpendicular to magnetic field

Zeeman Background Correction

Zeeman Background Correction

Total absorbance measured with magnet OFF

- Same measurement made by Deuterium or Smith-Hieftje systems
- Background absorbance measured with magnet ON
 - Polarizer excludes pi (π) component
 - Measurement made exactly at the analyte wavelength

Molecular species are unaffected by magnetic field

Correction takes place at the **EXACT** analyte wavelength

- Correction over the complete wavelength range
- Correction for structure background
- Correction for <u>some</u> spectral interferences
- Only one light source is required
- True double beam performance
 - Magnet On magnet Off
 - Automatic compensation for lamp drift

Disadvantages Zeeman Background Correction

Calibration roll-over

- Degree of roll-over is element dependent
- Sensitivity loss for some elements
 - Degree of sensitivity loss is element dependent
 - Expressed as magnetic sensitivity ratio (MSR)
 - Majority of elements MSR loss $\leq 10\%$

Zeeman Calibration Roll-Over

Inspiring **Excellence**

VARIAN

Zeeman Summary

Good for difficult samples

- High background
- Unknown interferences

Good when spectral interferences occur

- Se in the presence of high Fe or phosphate
- As in the presence of high AI or phosphate
- Pb in the presence of high phosphate
 - 217.0 nm only

