Industrial Wastewater to Crop Irrigation

Chad Bear, Joseph Becerra, Mychael Meier
Industrial Wastewater Background

- **Source of Water**
 - Discharge from Metal Finishing Plant

- **Analysis/Contaminants**
 - pH, suspended solids, toxic metals

- **Treatment**
 - Main focus, remove copper

- **Use**
 - Direct Crop Irrigation
Industrial Wastewater Analysis

- **Analysis Physical Parameters**
 - pH Test - 3.5
 - Turbidity Test - 4.80 NTU
 - TSS- Total Suspended Solids - 120 mg/L
 - TDS- Total Dissolved Solids - 514.5 mg/L
 - Conductivity - 1029µs/cm

- **Analysis Chemical Parameters**
 - Spectrophotometer - .086A
 - BOD/COD - No BOD, COD - 35 mg/L
 - Ion Chromatograph - 15.4 mg/L Phosphate
 - Colorimetric - 1.94 mg/L NH4⁺
Copper Used in Metal Plating

- Toxic Metal Measurement
 - Copper
 - Mixed 4.5mL of Copper solution with 0.5mL ammonia
 - Measured absorptivity of sample

- High levels of copper
 - Toxic to plants
Treatment Method

- **Determine Optimum pH Level For Copper Precipitation**
 - 6 - 0.5L of wastewater
 - NaOH added 0, 0.5, 1, 1.5, 2, 3mL
 - Solubility of Metals is Dependent on pH
 - Results determined 3mL was necessary

- **Determine Optimum PAIC Addition for Copper Concentration Coagulation**
 - 6 - 0.5L of wastewater
 - PAIC coagulant: 0, 50, 200, 400, 600, 1000 µL
 - Measure TSS to determine effectiveness
 - Results determined 1000µL was necessary
Recycling Industrial Wastewater in Israel

- Applications in Israel
 - Direct Crop Irrigation
 - Unrestricted/Restricted

- Applications in California
 - Direct Crop Irrigation: Currently 80% of CA water usage.
Metal Finishing in California

- Copper is used extensively in the chroming and electroplating process of metals.
- Southern California has several chroming and electroplating facilities and washing off the parts carries the contamination to the waste water system.
Acknowledgments

Generously sponsored by:

Curtis and Shirley Chambers

The Murray Galinson San Diego-Israel Initiative

The Israel Institute