Passive Scalars and Scalar Vectors in Isotropic Turbulence

Sabrina Smith

Dr. Frank Jacobitz

What is a fluid?

- A fluid is defined as a substance that yields to shearing forces.
 - A solid is not considered a fluid due its resistance of shear forces

Flow of a Fluid

Laminar Flow

Why Study Turbulence?

Passive Scalars

Passive Vectors

$$(\frac{\partial}{\partial t} + u \bullet \nabla)w = \gamma_1 \nabla q + \gamma_2 w \bullet \nabla u + \alpha \nabla^2 w$$

$$\nabla \cdot \boldsymbol{w} = 0$$

Mass Conservation

What would happen if we added an imposed condition similar to mass conservation in a scalar quantity?

Visualizing Turbulence

Current Results

Probability Density Functions

			RMS	Flattness	Skewness
SCALAR 000	SLACD	1	1.422E-07	4.0276	-0.0027
		2	1.4172E-07	4.0056	0.000102
		3	1.4185E-07	4.0193	-0.0011
	ULACD	1	5.0922	8.5289	0.0055
		2	5.1345	8.8056	0.0012
		3	5.1313	8.7798	-0.0015
SCALAR 003	SLACD	1	1.2304E-08	4.8887	-5.4E-05
		2	1.2254E-08	5.1223	0.0027
		3	1.2075E-08	4.9474	0.0092
	ULACD	1	0.4626	6.4240	0.0017
		2	0.4620	6.8290	0.0072
		3	0.462	6.7707	-0.0042
SCALAR VECTOR 000	SLACD	1	2.1438E-07	4.3249	-0.0014
		2	2.126E-07	4.4153	0.000896
		3	2.1249E-07	4.4074	0.000165
	ULACD	1	5.0922	8.5285	0.0055
		2	5.1345	<mark>8.80</mark> 56	0.0012
		3	5.1313	8.7798	-0.0015
SCALAR VECTOR 003	SLACD	1	1.7036E-08	4.727	-0.001
		2	1.7001E-08	4.8783	0.009
		3	1.6875E-08	4.7477	0.0051
	ULACD	1	0.4626	6.424	0.0017
		2	0.462	6.829	0.462
		3	0.462	6.7707	-0.0042

Key Questions Answered

- Why do the dynamics of a passive scalar differ from that of the velocity field, which determines its evolution?
- What is the impact of an additional constraint, mimicking mass conservation, have on the passive vector dynamics?
- Can a passive vector behave similarly to the velocity field when such a constraint is added?

Questions

SabrinaSmith@sandiego.edu

- 1) <u>https://www.sciencedirect.com/science/article/pii/S0013935120307143</u>
- 2) http://www.dripbook.com/markmawson/photography-portfolio/aqueous-fluoreau/#0
- 3) Yang, Jingyuan, et al. "Statistical Properties of an Incompressible Passive Vector Convected by Isotropic Turbulence." Physical Review Fluids, vol. 4, no. 6, 2019, doi:10.1103/physrevfluids.4.064601.
- 4) Yoshida, Kyo, and Yukio Kaneda. "Anomalous Scaling of Anisotropy of Second-Order Moments in a Model of a Randomly Advected Solenoidal Vector Field." Physical Review E, vol. 63, no. 1, 2000, doi:10.1103/physreve.63.016308.
- 5) http://www.damtp.cam.ac.uk/user/hkm2/PDFs/Moffatt1978.pdf
- 6) <u>https://www.sciencedirect.com/topics/engineering/fluid-mechanics#:~:text=Fundamentals%20of%20Fluid%20Mechanics&text=Fluid%20mechanics%20is%20the%20study%20of%20fluids%20at%20rest%20and,conservation%2C%20regulating%2C%20and%20constitutive.</u>
- 7) https://www.youtube.com/watch?v=HurJ3b7n_8w